Serveur d'exploration Sulfur Transférase

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Elucidating molecular interactions of L-nucleotides with HIV-1 reverse transcriptase and mechanism of M184V-caused drug resistance.

Identifieur interne : 000153 ( Main/Exploration ); précédent : 000152; suivant : 000154

Elucidating molecular interactions of L-nucleotides with HIV-1 reverse transcriptase and mechanism of M184V-caused drug resistance.

Auteurs : Magdeleine Hung [États-Unis] ; E John Tokarsky [États-Unis] ; Leanna Lagpacan [États-Unis] ; Lijun Zhang [États-Unis] ; Zucai Suo [États-Unis] ; Eric B. Lansdon [États-Unis]

Source :

RBID : pubmed:31872074

Descripteurs français

English descriptors

Abstract

Emtricitabine (FTC) and lamivudine (3TC), containing an oxathiolane ring with unnatural (-)-stereochemistry, are widely used nucleoside reverse transcriptase inhibitors (NRTIs) in anti-HIV therapy. Treatment with FTC or 3TC primarily selects for the HIV-1 RT M184V/I resistance mutations. Here we provide a comprehensive kinetic and structural basis for inhibiting HIV-1 RT by (-)-FTC-TP and (-)-3TC-TP and drug resistance by M184V. (-)-FTC-TP and (-)-3TC-TP have higher binding affinities (1/Kd) for wild-type RT but slower incorporation rates than dCTP. HIV-1 RT ternary crystal structures with (-)-FTC-TP and (-)-3TC-TP corroborate kinetic results demonstrating that their oxathiolane sulfur orients toward the DNA primer 3'-terminus and their triphosphate exists in two different binding conformations. M184V RT displays greater (>200-fold) Kd for the L-nucleotides and moderately higher (>9-fold) Kd for the D-isomers compared to dCTP. The M184V RT structure illustrates how the mutation repositions the oxathiolane of (-)-FTC-TP and shifts its triphosphate into a non-productive conformation.

DOI: 10.1038/s42003-019-0706-x
PubMed: 31872074
PubMed Central: PMC6910994


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Elucidating molecular interactions of
<i>L</i>
-nucleotides with HIV-1 reverse transcriptase and mechanism of M184V-caused drug resistance.</title>
<author>
<name sortKey="Hung, Magdeleine" sort="Hung, Magdeleine" uniqKey="Hung M" first="Magdeleine" last="Hung">Magdeleine Hung</name>
<affiliation wicri:level="2">
<nlm:affiliation>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tokarsky, E John" sort="Tokarsky, E John" uniqKey="Tokarsky E" first="E John" last="Tokarsky">E John Tokarsky</name>
<affiliation wicri:level="2">
<nlm:affiliation>2The Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>2The Ohio State Biophysics Program, The Ohio State University, Columbus</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lagpacan, Leanna" sort="Lagpacan, Leanna" uniqKey="Lagpacan L" first="Leanna" last="Lagpacan">Leanna Lagpacan</name>
<affiliation wicri:level="2">
<nlm:affiliation>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Lijun" sort="Zhang, Lijun" uniqKey="Zhang L" first="Lijun" last="Zhang">Lijun Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Suo, Zucai" sort="Suo, Zucai" uniqKey="Suo Z" first="Zucai" last="Suo">Zucai Suo</name>
<affiliation wicri:level="2">
<nlm:affiliation>2The Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>2The Ohio State Biophysics Program, The Ohio State University, Columbus</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>3Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
<wicri:cityArea>3Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lansdon, Eric B" sort="Lansdon, Eric B" uniqKey="Lansdon E" first="Eric B" last="Lansdon">Eric B. Lansdon</name>
<affiliation wicri:level="2">
<nlm:affiliation>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31872074</idno>
<idno type="pmid">31872074</idno>
<idno type="doi">10.1038/s42003-019-0706-x</idno>
<idno type="pmc">PMC6910994</idno>
<idno type="wicri:Area/Main/Corpus">000053</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000053</idno>
<idno type="wicri:Area/Main/Curation">000053</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000053</idno>
<idno type="wicri:Area/Main/Exploration">000053</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Elucidating molecular interactions of
<i>L</i>
-nucleotides with HIV-1 reverse transcriptase and mechanism of M184V-caused drug resistance.</title>
<author>
<name sortKey="Hung, Magdeleine" sort="Hung, Magdeleine" uniqKey="Hung M" first="Magdeleine" last="Hung">Magdeleine Hung</name>
<affiliation wicri:level="2">
<nlm:affiliation>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tokarsky, E John" sort="Tokarsky, E John" uniqKey="Tokarsky E" first="E John" last="Tokarsky">E John Tokarsky</name>
<affiliation wicri:level="2">
<nlm:affiliation>2The Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>2The Ohio State Biophysics Program, The Ohio State University, Columbus</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lagpacan, Leanna" sort="Lagpacan, Leanna" uniqKey="Lagpacan L" first="Leanna" last="Lagpacan">Leanna Lagpacan</name>
<affiliation wicri:level="2">
<nlm:affiliation>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Lijun" sort="Zhang, Lijun" uniqKey="Zhang L" first="Lijun" last="Zhang">Lijun Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Suo, Zucai" sort="Suo, Zucai" uniqKey="Suo Z" first="Zucai" last="Suo">Zucai Suo</name>
<affiliation wicri:level="2">
<nlm:affiliation>2The Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>2The Ohio State Biophysics Program, The Ohio State University, Columbus</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>3Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
<wicri:cityArea>3Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lansdon, Eric B" sort="Lansdon, Eric B" uniqKey="Lansdon E" first="Eric B" last="Lansdon">Eric B. Lansdon</name>
<affiliation wicri:level="2">
<nlm:affiliation>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Communications biology</title>
<idno type="eISSN">2399-3642</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles (MeSH)</term>
<term>Amino Acid Substitution (MeSH)</term>
<term>Databases, Genetic (MeSH)</term>
<term>Drug Resistance, Viral (MeSH)</term>
<term>HIV Infections (drug therapy)</term>
<term>HIV Infections (virology)</term>
<term>HIV Reverse Transcriptase (antagonists & inhibitors)</term>
<term>HIV Reverse Transcriptase (chemistry)</term>
<term>HIV Reverse Transcriptase (genetics)</term>
<term>HIV-1 (drug effects)</term>
<term>HIV-1 (enzymology)</term>
<term>HIV-1 (genetics)</term>
<term>Humans (MeSH)</term>
<term>Microbial Sensitivity Tests (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Nucleotides (chemistry)</term>
<term>Nucleotides (pharmacology)</term>
<term>Reverse Transcriptase Inhibitors (chemistry)</term>
<term>Reverse Transcriptase Inhibitors (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Allèles (MeSH)</term>
<term>Bases de données génétiques (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Infections à VIH (traitement médicamenteux)</term>
<term>Infections à VIH (virologie)</term>
<term>Inhibiteurs de la transcriptase inverse (composition chimique)</term>
<term>Inhibiteurs de la transcriptase inverse (pharmacologie)</term>
<term>Mutation (MeSH)</term>
<term>Nucléotides (composition chimique)</term>
<term>Nucléotides (pharmacologie)</term>
<term>Résistance virale aux médicaments (MeSH)</term>
<term>Substitution d'acide aminé (MeSH)</term>
<term>Tests de sensibilité microbienne (MeSH)</term>
<term>Transcriptase inverse du VIH (antagonistes et inhibiteurs)</term>
<term>Transcriptase inverse du VIH (composition chimique)</term>
<term>Transcriptase inverse du VIH (génétique)</term>
<term>VIH-1 (Virus de l'Immunodéficience Humaine de type 1) (effets des médicaments et des substances chimiques)</term>
<term>VIH-1 (Virus de l'Immunodéficience Humaine de type 1) (enzymologie)</term>
<term>VIH-1 (Virus de l'Immunodéficience Humaine de type 1) (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>HIV Reverse Transcriptase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>HIV Reverse Transcriptase</term>
<term>Nucleotides</term>
<term>Reverse Transcriptase Inhibitors</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Transcriptase inverse du VIH</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Inhibiteurs de la transcriptase inverse</term>
<term>Nucléotides</term>
<term>Transcriptase inverse du VIH</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>HIV-1</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>HIV Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>VIH-1 (Virus de l'Immunodéficience Humaine de type 1)</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>VIH-1 (Virus de l'Immunodéficience Humaine de type 1)</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>HIV-1</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>HIV Reverse Transcriptase</term>
<term>HIV-1</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Transcriptase inverse du VIH</term>
<term>VIH-1 (Virus de l'Immunodéficience Humaine de type 1)</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Inhibiteurs de la transcriptase inverse</term>
<term>Nucléotides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Nucleotides</term>
<term>Reverse Transcriptase Inhibitors</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Infections à VIH</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à VIH</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>HIV Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Amino Acid Substitution</term>
<term>Databases, Genetic</term>
<term>Drug Resistance, Viral</term>
<term>Humans</term>
<term>Microbial Sensitivity Tests</term>
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Allèles</term>
<term>Bases de données génétiques</term>
<term>Humains</term>
<term>Mutation</term>
<term>Résistance virale aux médicaments</term>
<term>Substitution d'acide aminé</term>
<term>Tests de sensibilité microbienne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Emtricitabine (FTC) and lamivudine (3TC), containing an oxathiolane ring with unnatural (-)-stereochemistry, are widely used nucleoside reverse transcriptase inhibitors (NRTIs) in anti-HIV therapy. Treatment with FTC or 3TC primarily selects for the HIV-1 RT M184V/I resistance mutations. Here we provide a comprehensive kinetic and structural basis for inhibiting HIV-1 RT by (-)-FTC-TP and (-)-3TC-TP and drug resistance by M184V. (-)-FTC-TP and (-)-3TC-TP have higher binding affinities (1/
<i>K</i>
<sub>d</sub>
) for wild-type RT but slower incorporation rates than dCTP. HIV-1 RT ternary crystal structures with (-)-FTC-TP and (-)-3TC-TP corroborate kinetic results demonstrating that their oxathiolane sulfur orients toward the DNA primer 3'-terminus and their triphosphate exists in two different binding conformations. M184V RT displays greater (>200-fold)
<i>K</i>
<sub>d</sub>
for the
<i>L</i>
-nucleotides and moderately higher (>9-fold)
<i>K</i>
<sub>
<i>d</i>
</sub>
for the
<i>D</i>
-isomers compared to dCTP. The M184V RT structure illustrates how the mutation repositions the oxathiolane of (-)-FTC-TP and shifts its triphosphate into a non-productive conformation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31872074</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">2399-3642</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Communications biology</Title>
<ISOAbbreviation>Commun Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Elucidating molecular interactions of
<i>L</i>
-nucleotides with HIV-1 reverse transcriptase and mechanism of M184V-caused drug resistance.</ArticleTitle>
<Pagination>
<MedlinePgn>469</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s42003-019-0706-x</ELocationID>
<Abstract>
<AbstractText>Emtricitabine (FTC) and lamivudine (3TC), containing an oxathiolane ring with unnatural (-)-stereochemistry, are widely used nucleoside reverse transcriptase inhibitors (NRTIs) in anti-HIV therapy. Treatment with FTC or 3TC primarily selects for the HIV-1 RT M184V/I resistance mutations. Here we provide a comprehensive kinetic and structural basis for inhibiting HIV-1 RT by (-)-FTC-TP and (-)-3TC-TP and drug resistance by M184V. (-)-FTC-TP and (-)-3TC-TP have higher binding affinities (1/
<i>K</i>
<sub>d</sub>
) for wild-type RT but slower incorporation rates than dCTP. HIV-1 RT ternary crystal structures with (-)-FTC-TP and (-)-3TC-TP corroborate kinetic results demonstrating that their oxathiolane sulfur orients toward the DNA primer 3'-terminus and their triphosphate exists in two different binding conformations. M184V RT displays greater (>200-fold)
<i>K</i>
<sub>d</sub>
for the
<i>L</i>
-nucleotides and moderately higher (>9-fold)
<i>K</i>
<sub>
<i>d</i>
</sub>
for the
<i>D</i>
-isomers compared to dCTP. The M184V RT structure illustrates how the mutation repositions the oxathiolane of (-)-FTC-TP and shifts its triphosphate into a non-productive conformation.</AbstractText>
<CopyrightInformation>© The Author(s) 2019.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Hung</LastName>
<ForeName>Magdeleine</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Tokarsky</LastName>
<ForeName>E John</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>2The Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lagpacan</LastName>
<ForeName>Leanna</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Lijun</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Suo</LastName>
<ForeName>Zucai</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>2The Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210 USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>3Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lansdon</LastName>
<ForeName>Eric B</ForeName>
<Initials>EB</Initials>
<Identifier Source="ORCID">0000-0001-9461-1475</Identifier>
<AffiliationInfo>
<Affiliation>1Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>S10 OD021832</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>12</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Commun Biol</MedlineTA>
<NlmUniqueID>101719179</NlmUniqueID>
<ISSNLinking>2399-3642</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009711">Nucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018894">Reverse Transcriptase Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.-</RegistryNumber>
<NameOfSubstance UI="C514824">reverse transcriptase, Human immunodeficiency virus 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.49</RegistryNumber>
<NameOfSubstance UI="D054303">HIV Reverse Transcriptase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="N">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024882" MajorTopicYN="Y">Drug Resistance, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015658" MajorTopicYN="N">HIV Infections</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054303" MajorTopicYN="N">HIV Reverse Transcriptase</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015497" MajorTopicYN="N">HIV-1</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008826" MajorTopicYN="N">Microbial Sensitivity Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009711" MajorTopicYN="N">Nucleotides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018894" MajorTopicYN="N">Reverse Transcriptase Inhibitors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Enzyme mechanisms</Keyword>
<Keyword MajorTopicYN="Y">HIV infections</Keyword>
<Keyword MajorTopicYN="Y">Pharmaceutics</Keyword>
<Keyword MajorTopicYN="Y">X-ray crystallography</Keyword>
</KeywordList>
<CoiStatement>Competing interestsM.H., L.L., L.Z. and E.B.L. are or were employed by Gilead Sciences at the time of data generation. E.J.T. and Z.S. declare no competing interests.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31872074</ArticleId>
<ArticleId IdType="doi">10.1038/s42003-019-0706-x</ArticleId>
<ArticleId IdType="pii">706</ArticleId>
<ArticleId IdType="pmc">PMC6910994</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1996 Jun 7;271(23):13656-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8662909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Aug 19;36(33):10292-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1993 Apr;37(4):875-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7684216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Nov 27;282(5394):1669-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9831551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Dec 11;284(50):35092-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Jul 7;300(2):403-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Sep;42(15):9984-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25104018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS. 2005 Nov 4;19(16):1751-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16227782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Apr 1;26(7):1713-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9512543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Aug 1;15(15):4040-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8670908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 1996 Jun;31(1-2):45-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8793008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2003 Nov;47(11):3478-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14576105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 2;278(18):16280-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12554739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Jul;74(14):6262-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10864635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jun 2;45(10):6228-6237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28402499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10468556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Ther. 2009 Feb;26(2):155-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19225726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2004 May;11(5):469-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15107837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Aug 15;25(16):3212-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9241233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2010 Oct;17(10):1202-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20852643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2011 Jan;55(1):276-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21078938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2003 Dec 1;188(11):1652-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14639535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2003 Nov;47(11):3377-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14576091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Apr 9;397(4):967-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20156454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Apr;71(4):3346-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9060708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2005 Jul;49(7):2828-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5653-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7685907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):E3033-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25015085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8596-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26124101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1995 Jul;39(7):1624-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7492119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hepatol. 2005 Jul;43(1):60-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15922478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2012 Jan 13;25(1):225-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22132702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2006 Feb;50(2):625-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16436719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1999 Sep;13(12):1511-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10463941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):298-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12520007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1999 Jan;179(1):92-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9841827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Jul 20;38(29):9440-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10413520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1992 Nov;36(11):2423-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1283296</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Floride</li>
<li>Ohio</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Hung, Magdeleine" sort="Hung, Magdeleine" uniqKey="Hung M" first="Magdeleine" last="Hung">Magdeleine Hung</name>
</region>
<name sortKey="Lagpacan, Leanna" sort="Lagpacan, Leanna" uniqKey="Lagpacan L" first="Leanna" last="Lagpacan">Leanna Lagpacan</name>
<name sortKey="Lansdon, Eric B" sort="Lansdon, Eric B" uniqKey="Lansdon E" first="Eric B" last="Lansdon">Eric B. Lansdon</name>
<name sortKey="Suo, Zucai" sort="Suo, Zucai" uniqKey="Suo Z" first="Zucai" last="Suo">Zucai Suo</name>
<name sortKey="Suo, Zucai" sort="Suo, Zucai" uniqKey="Suo Z" first="Zucai" last="Suo">Zucai Suo</name>
<name sortKey="Tokarsky, E John" sort="Tokarsky, E John" uniqKey="Tokarsky E" first="E John" last="Tokarsky">E John Tokarsky</name>
<name sortKey="Zhang, Lijun" sort="Zhang, Lijun" uniqKey="Zhang L" first="Lijun" last="Zhang">Lijun Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/SulfurTransferaseV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000153 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000153 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    SulfurTransferaseV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31872074
   |texte=   Elucidating molecular interactions of L-nucleotides with HIV-1 reverse transcriptase and mechanism of M184V-caused drug resistance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31872074" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SulfurTransferaseV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 14:58:45 2020. Site generation: Sat Nov 21 14:59:12 2020